【高考数学】备战2024年专题06 解三角形及应用(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx本文件免费下载 【共44页】

【高考数学】备战2024年专题06 解三角形及应用(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
【高考数学】备战2024年专题06 解三角形及应用(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
【高考数学】备战2024年专题06 解三角形及应用(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题06解三角形及应用易错点一:易忽视三角形解的个数(解三角形多解情况)1.方法技巧:解三角形多解情况在△ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到.技巧:正弦定理和余弦定理是解三角形的两个重要工具,它沟通了三角形中的边角之间的内在联系,正弦定理能够解决两类问题问题1:已知两角及其一边,求其它的边和角。这时有且只有一解。小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com问题2:已知两边和其中一边的对角,求其它的边和角,这是由于正弦函数在在区间内不严格格单调,此时三角形解的情况可能是无解、一解、两解,可通过几何法来作出判断三角形解的个数。题设三角形中,已知一个角A和两个边a,b,判断三角形个数,遵循以下步骤第一步:先画一个角并标上字母A第二步:标斜边(非对角边)⇒b第三步:画角的高,然后观察(a,bsinA)易错提醒:利用正弦定理解三角形时,若已知三角形的两边及其一边的对角解三角形时,易忽视三角形解的个数.例.设的内角所对的边分别为,则下列结论正确的是()A.若,则B.若,则为钝角三角形C.若,则符合条件的有两个D.若,则为等腰三角形或直角三角形【详解】A:由正弦定理可知:,因为,所以,因此本选项正确;B:根据余弦定理由,因为,所以有,因此该三角形是钝角三角形,所以本选项正确;C:由正弦定理可知:,所以不存在这样的三角形,因此本选项不正确;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comD:,或,当时,可得,此时该三角形是等腰三角形;当时,可得,此时该三角形是直角三角形,故选:ABD变式1.在中,内角所对的边分别为,则下列说法正确的是()A.B.若,且,则为等边三角形C.若,则是等腰三角形D.在中,,则使有两解的的范围是【详解】对A,即,即,因为,故原式成立,故A正确;对B,则,即,故,由可得.又可得,即,故,由可得.故,则为等边三角形,故B正确;对C,当时,满足,则或,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以或,故不一定为等腰三角形,故C错误;对D,要使有两解,则需,故,即,故D正确.故选:ABD变式2.在中,内角的对边分别为.则下列结论正确的是()A.若,则B.若,则角为钝角C.若均不为直角,则D.若,则唯一确定【详解】A选项,,,,,所以A选项错误.B选项,,即,即,由正弦定理得,则,由于,所以,所以,所以为钝角,所以B选项正确.C选项,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,所以,C选项正确.D选项,,所以,所以有两解,所以D选项错误.故选:BC变式3.在中,角,,所对的边分别是,,,下列叙述正确的是()A.若,,,则满足条件的三角形有且只有一个B.若,则为钝角三角形C.若,则为等腰三角形D.若不是直角三角形,则【详解】对于A,由,则,又,知满足条件的三角形只有一个,故A正确;对于B,,即,为钝角,故B正确;对于C,,即,由正弦定理可得,则,所以或,故C错误.对于D,因为不是直角三角形,所以,,均有意义,又,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料素养拓展5 嵌套函数的零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展5 嵌套函数的零点问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
1992年高考数学真题(文科)(湖南自主命题).doc
1992年高考数学真题(文科)(湖南自主命题).doc
免费
18下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  章末过关检测(四).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 章末过关检测(四).docx
免费
22下载
第02讲+导数与函数的单调性(十二大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第02讲+导数与函数的单调性(十二大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2024年新高考数学复习资料素养拓展2 不等式中的恒成立问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展2 不等式中的恒成立问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
高中数学·必修第二册(RJ-B)课时作业(word)  课时作业  18.docx
高中数学·必修第二册(RJ-B)课时作业(word) 课时作业 18.docx
免费
14下载
2022年高考数学试卷(理)(全国乙卷)(空白卷) (8).docx
2022年高考数学试卷(理)(全国乙卷)(空白卷) (8).docx
免费
0下载
7.安徽省十校联盟2022-2023学年高二下学期开学考试数学试题.pdf
7.安徽省十校联盟2022-2023学年高二下学期开学考试数学试题.pdf
免费
10下载
2000年青海高考理科数学真题及答案.doc
2000年青海高考理科数学真题及答案.doc
免费
8下载
z20高三第一次联考(开学考)数学卷137458145756925082.1e8a6d6fd48d527(3).pdf
z20高三第一次联考(开学考)数学卷137458145756925082.1e8a6d6fd48d527(3).pdf
免费
0下载
2001年高考数学真题(文科)(天津自主命题).doc
2001年高考数学真题(文科)(天津自主命题).doc
免费
5下载
2024年新高考数学复习资料第30讲 数列求和(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第30讲 数列求和(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (4).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (4).docx
免费
0下载
2024年新高考数学复习资料技巧01 单选题和多选题的答题技巧(10大核心考点)(讲义)(原卷版).docx
2024年新高考数学复习资料技巧01 单选题和多选题的答题技巧(10大核心考点)(讲义)(原卷版).docx
免费
0下载
2001年贵州高考文科数学真题及答案.doc
2001年贵州高考文科数学真题及答案.doc
免费
8下载
2023年高考数学试卷(上海)(春考)(解析卷).docx
2023年高考数学试卷(上海)(春考)(解析卷).docx
免费
0下载
2025年新高考数学复习资料第06练 函数的概念与表示(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第06练 函数的概念与表示(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2011年高考数学试卷(理)(新课标)(解析卷) (3).pdf
2011年高考数学试卷(理)(新课标)(解析卷) (3).pdf
免费
0下载
2014年高考数学试卷(文)(广东)(解析卷).doc
2014年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
精品解析:江苏省百校大联考2024届高三上学期第五次考试数学试题(解析版).docx
精品解析:江苏省百校大联考2024届高三上学期第五次考试数学试题(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料