第一章有理数知识复习检测题一、知识要点1.字母a可以表示任意数。a不一定是正数,-a不一定是负数。2.若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。3.正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。4.只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。5.引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。6.有理数的分类⑴按有理数的意义分类⑵按正、负来分总结:正整数①正整数、0统称为非负整数(自0正整数然数)整数负整数正有理数②负整数、0统称为非正整数正分数③正有理数、0统称为非负有理数有理数有理数0(0不能忽视)④负有理数、0统称为非正有理数正分数负整数分数负有理负分数负分数7.⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。8.数轴上的点与有理数的关系:⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。⑵数轴上的点并不是全部表示有理数,即有理数与数轴上的点不是一一对应关系。数轴上的点也可以表示无理数。9.⑴在数轴上,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。10.相反数:只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数.11.相反数的性质与判定::⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,即a,b互为相反数,则a+b=0。12.互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。表示互为相反数的两个点关于原点对称。13.⑴求一个数的相反数,只要在它的前面添上负号“-”即可;⑵求多个数的和或差的相反数,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。);14.多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。15.绝对值的几何定义:数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。⑴正数的绝对值是它本身;⑵负数的绝对值是它的相反数;⑶0的绝对值是0.16.①:a≥0<═>|a|=a(非负数的绝对值等于本身。)②:a≤0<═>|a|=-a(非正数的绝对值等于其相反数。)17.绝对值的性质:任何一个有理数的绝对值都是非负数——绝对值的非负性。即|a|≥0。①绝对值最小的数是0.②任何数的绝对值都不小于本身。即:|a|≥a;③相反数的绝对值相等。即:|-a|=|a|;④绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;⑤若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。18.有理数大小的比较:⑴利用数轴比较:数轴上右边的数总比左边的数大;⑵利用绝对值比较:同号两数,绝对值大的反而小;③异号两数,正数大于负数.19.绝对值的化简:①当a≥0时,|a|=a;②当a≤0时,|a|=-a20.有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。21.有理数加法的运算律:⑴加法交换律:a+b=b+a;⑵加法结合律:(a+b)+c=a+(b+c);在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。22.加法性质:一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:⑴当b>0时,a+b>a⑵当b<0时,a...