小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)函数y=3sin(2x+)的最小正周期为.2.(5分)设z=(2i﹣)2(i为虚数单位),则复数z的模为.3.(5分)双曲线的两条渐近线方程为.4.(5分)集合{1﹣,0,1}共有个子集.5.(5分)如图是一个算法的流程图,则输出的n的值为.6.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为.7.(5分)现在某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.8.(5分)如图,在三棱柱A1B1C1ABC﹣中,D,E,F分别是AB,AC,AA1的中点,设三棱锥FADE﹣的体积为V1,三棱柱A1B1C1ABC﹣的体积为V2,则V1:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comV2=.9.(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是.10.(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.11.(5分)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x24x﹣,则不等式f(x)>x的解集用区间表示为.12.(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2=,则椭圆C的离心率为.13.(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.14.(5分)在正项等比数列{an}中,,a6+a7=3,则满足a1+a2+…+an>a1a2…an的最大正整数n的值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com15.(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)如图,在三棱锥SABC﹣中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x4﹣,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x3﹣上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.18.(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com19.(16分)设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.20.(16分)设函数f(x)=lnxa...