2020浙江省金华市中考数学真题及答案一、选择题(共10小题,每小题3分,共30分).1.实数3的相反数是A.B.3C.D.2.分式的值是零,则的值为A.2B.5C.D.3.下列多项式中,能运用平方差公式分解因式的是A.B.C.D.4.下列四个图形中,是中心对称图形的是A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是A.B.C.D.6.如图,工人师傅用角尺画出工件边缘的垂线和,得到.理由是A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.已知点,,,在函数的图象上,则下列判断正确的是A.B.C.D.8.如图,是等边的内切圆,分别切,,于点,,,是上一点,则的度数是A.B.C.D.9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为.则列出方程正确的是A.B.C.D.10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形与正方形.连结,相交于点、与相交于点.若,则的值是A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.点在第二象限内,则的值可以是(写出一个即可).12.数据1,2,4,5,3的中位数是.13.如图为一个长方体,则该几何体主视图的面积为.14.如图,平移图形,与图形可以拼成一个平行四边形,则图中的度数是.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点,,均为正六边形的顶点,与地面所成的锐角为.则的值是.16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为,(点与点重合),点是夹子转轴位置,于点,于点,,,,.按图示方式用手指按夹子,夹子两边绕点转动.(1)当,两点的距离最大时,以点,,,为顶点的四边形的周长是.(2)当夹子的开口最大(即点与点重合)时,,两点的距离为.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:.18.解不等式:.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项)得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人跳绳59健身操▲俯卧撑31开合跳▲其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,的半径,于点,.(1)求弦的长.(2)求的长.21.某地区山峰的高度每增加1百米,气温大约降低,气温和高度(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求关于的函数表达式;(3)测得山顶的气温为,求该山峰的高度.22.如图,在中,,,.(1)求边上的高线长.(2)点为线段的中点,点在边上,连结,沿将折叠得到.①如图2,当点落在上时,求的度数.②如图3,连结,当时,求的长23.如图,在平面直角坐标系中,已知二次函数图象的顶点为,与轴交于点,异于顶点的点在该函数图象上.(1)当时,求的值.(2)当时,若点在第一象限内,结合图象,求当时,自变量的取值范围.(3)作直线与轴相交于点.当点在轴上方,且在线段上时,求的取值范围.24.如图,在平面直角坐标系中,正方形的两直角边分别在坐标轴的正半轴上,分别过,的中点,作,的平行线,相交于点,已知.(1)求证:四边形为菱形.(2)求四边形的面积.(3)若点在轴正半轴上(异于点,点在轴上,平面内是否存在点,使得以点,,,为顶点的四边形与四边形相似?若存在,求点的坐标;若不存在,试说明理由.