小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com直线和圆的位置关系第1课时直线和圆的位置关系[见A本P43]1.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是(B)【解析】 ⊙O的半径r为5,圆心O到直线l的距离d为3,且0<d<r,∴直线l与⊙O的位置关系是相交且直线l不经过圆心.2.已知圆的半径是5cm,如果圆心到直线的距离是5cm,那么直线和圆的位置关系是(B)A.相交B.相切C.相离D.内含【解析】d=r=5cm,故选B.3.[2013·青岛]直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是(C)A.r<6B.r=6C.r>6D.r≥6【解析】 直线l与半径为r的⊙O相交,且点O到直线l的距离d=6,∴r>6.4.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是(D)A.相切B.相离C.相离或相切D.相切或相交【解析】当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交,故直线l与⊙O的位置关系是相切或相交.5.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆(C)A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离6.Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为(B)A.2cmB.2.4cmC.3cmD.4cm7.在△ABC中,已知∠ACB=90°,BC=AC=10,以C为圆心,分别以5,5,8为半径作圆,那么直线AB与圆的位置关系分别为__相离__、__相切__、__相交__.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】C到AB的距离d=5.当d=5>r=5时,直线AB与圆相离;当d=5=r时,直线AB与圆相切;当d=5<r=8时,直线AB与圆相交.8.已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是__相离__.【解析】因为⊙O的面积为9πcm2,所以⊙O的半径r=3cm,而点O到直线l的距离d=πcm,所以d>r,所以直线l与⊙O相离.图24-2-79.如图24-2-7,在Rt△ABC中,∠C=90°,∠A=60°,BC=4cm,以点C为圆心,以3cm长为半径作圆,则⊙C与AB的位置关系是__相交__.【解析】在Rt△ABC中,因为∠C=90°,∠A=60°,所以∠B=30°,所以AB=2AC.由勾股定理得AC2+BC2=AB2,即AC2+42=4AC2,解得AC=(负值已舍),所以AB=2AC=.设C到AB的距离为CD,则CD===2cm<3cm,所以以点C为圆心,以3cm长为半径的⊙C与AB的位置关系是相交.10.已知∠AOB=30°,P是OA上的一点,OP=24cm,以r为半径作⊙P.(1)若r=12cm,试判断⊙P与OB的位置关系;(2)若⊙P与OB相离,试求出r需满足的条件.图24-2-8解:过点P作PC⊥OB,垂足为C,则∠OCP=90°. ∠AOB=30°,OP=24cm,∴PC=OP=12cm.(1)当r=12cm时,r=PC,∴⊙P与OB相切,即⊙P与OB位置关系是相切.(2)当⊙P与OB相离时,r<PC,∴r需满足的条件是:0cm<r<12cm.图24-2-9小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com11.如图24-2-9,在平面直角坐标系中,⊙O的半径为1,则直线y=x-与⊙O的位置关系是(B)A.相离B.相切C.相交D.以上三种情况都有可能12.如图24-2-10,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点(0,n).且与直线y=-n始终保持相切,则n=____(用含a的代数式表示).图24-2-10【解析】如图,连接PF.设⊙P与直线y=-n相切于点E,连接PE.则PE⊥AE. 动点P在抛物线y=ax2上,∴设P(m,am2). ⊙P恒过点F(0,n),∴PE=PF,即m=2n又 am2=n∴n=.故答案是.13.如图24-2-11,在▱ABCD中,AB=10,AD=m,∠D=60°,以AB为直径作⊙O.图24-2-11(1)求圆心O到CD的距离(用含m的代数式来表示);(2)当m取何值时,CD与⊙O相切?解:(1)分别过A,O两点作AE⊥CD,OF⊥CD,垂足分别是点E,F,∴AE∥OF,OF就...