小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题22.39二次函数专题-销售与利润问题(基础篇)(专项练习)【专题说明】用二次函数解决销售与利润问题是中考的常考点,也是热点,解答这类问题最常用的方法之一是建立二次函数模式,利用二次函数的最大值或最小值。运用二次函数的性质求实际问题的最大值和最小值的一般步骤:(1)设自变量x和函数y;(2)求出函数解析式和自变量的取值范围;(3)化为顶点式,求出最值;检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内,并作答。相关等量关系:(1)利润=售价一进价;(2)总利润、单件利润、数量的关系;(3)总利润=单件利润×数量。一、单选题1.某商场降价销售一批名牌衬衫,已知所获得利润(元)与降价金额(元)之间的关系是,则获利最多为()A.元B.元C.元D.元2.某旅行社有100张床位,每张床位每晚收费10元时,客床可全部租出,若每张床每晚收费提高2元,则减少10张床位的租出;若每张床每晚收费再提高2元,则再减少10张床位的租出;以每次提高2元的这种方法变化下去,为了投资少而获利大,每张床每晚应提高()A.4元或16元B.4元C.6元D.8元3.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为()A.150元B.160元C.170元D.180元4.某畅销书的售价为每本30元,每星期可卖出200本,经调研,如果调整书籍的售价,每降价2元,每星期可多卖出40本,设每件商品降价x元后,每星期售出此畅销书的总销售额为y元,则y与x之间的函数关系为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.5.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x(x>0),设2015,2016,2017这三年该产品的总产量为y吨,则y关于x的函数关系式为()A.y=100(1﹣x)2B.y=100(1+x)C.y=D.y=100+100(1+x)+100(1+x)26.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润和月份之间的函数关系式为,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月7.某海滨浴场有100把遮阳伞,每把每天收费10元时,可全部租出,若每把每天收费提高1元,则减少5把伞租出,若每把每天收费再提高1元,则再减少5把伞租出,……,为了投资少而获利大,每把伞每天应提高收费()A.7元B.6元C.5元D.4元8.一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为()元.A.60B.65C.70D.759.某店销售一款运动服,每件进价100元,若按每件128元出售,每天可卖出100件,根据市场调查结果,若每件降价1元,则每天可多卖出5件,要使每天获得的利润最大,则每件需要降价(元)()A.3元B.4元C.5元D.8元10.某种商品每件的进价为30元,在某时间段内若以每件x元出售,可卖出(100-x)件.若想获得最大利润,则定价x应为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.35元B.45元C.55元D.65元11.某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x元,则依据题意可列方程为()A.B.C.D.二、填空题12.数量关系:(1)销售额=售价×____________;(2)利润=销售额-总成本=___________×销售量;(3)单件利润=售价-__________.13.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x...