2013年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0B.2C.﹣3D.﹣1.22.(3分)化简﹣2a+3a的结果是()A.﹣aB.aC.5aD.﹣5a3.(3分)用3个相同的立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(3分)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2B.x>1C.1≤x<2D.1<x≤25.(3分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是()A.80°B.70°C.60°D.50°6.(3分)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.4人D.6人7.(3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4B.x﹣6=4C.x+6=4D.x+6=﹣48.(3分)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.89.(3分)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4)B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)10.(3分)如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示,当点P运动5秒时,PD的长是()A.1.5cmB.1.2cmC.1.8cmD.2cm二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:x2﹣2x=.12.(4分)分式方程﹣2=0的解是.13.(4分)合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则学生B坐在2号座位的概率是.14.(4分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.15.(4分)如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=.16.(4分)如图,点P是反比例函数y=(k<0)图象上的点,PA垂直x轴于点A(﹣1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=.(1)k的值是;(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是.三、解答题(本题有8小题,第17-19题每题6分,第20、21题每题8分,第22、23题每题10,第24题12分,共66分,各小题必须写出解答过程)17.(6分)计算:﹣|﹣|+(﹣)0.18.(6分)先化简,再求值:(a+2)2+(1﹣a)(1+a),其中a=﹣.19.(6分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.20.(8分)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.21.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.22.(10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?23.(10分)如图,已知抛物线y=x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.(1)...