小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com班级姓名学号分数第17章勾股定理(A卷·知识通关练)核心知识1勾股定理1.(2022秋•南关区校级期末)如图,已知正方形A的面积为3,正方形B的面积为4,则正方形C的面积为()A.7B.5C.25D.12.(2022秋•成县期中)如图,在△ABC中,AB=AC,BD为AC边上的高,BD=4,CD=2,则AD的长度是()A.2.5B.3C.3.5D.43.(2022秋•石景山区期末)在等腰△ABC中,AB=AC=5,BC=2❑√13,则底边上的高为()A.12B.2❑√3C.3❑√2D.184.如图,在△ABC中,∠C=90°,斜边AB的垂直平分线l交AC于点D,连接BD.若AB=13cm,BC=5cm,则△BCD的周长为()A.18cmB.17cmC.11.5cmD.11cm小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2021秋•沈北新区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AC=20,BC=15.求:(1)CD的长;(2)BD的长.核心知识2勾股定理的证明1.(2022秋•南岸区校级期中)我国是最早了解勾股定理的国家之一,根据《周髀算经》的记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”.三国时代的蒋铭祖对《蒋铭祖算经》勾股定理作出了详细注释,并给出了另外一种证明.下面四幅图中,不能证明勾股定理的是()A.B.C.D.2.(2022秋•蒲江县校级期中)如图所示的正方形图案是用4个全等的直角三角形拼成的.已知正方形ABCD的面积为25,正方形EFGH的面积为1,若用x、y分别表示直角三角形的两直角边(x>y),下列三个结论:①x2+y2=25;②x﹣y=1;③xy=12;④x+y=40.其中正确的是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.①②③B.①②C.①③D.②③3.(2022秋•莲都区期中)如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成,图中正方形ABCD,正方形EFGH,正方形MNKJ的面积分别记为S1,S2,S3,若EF=4,则S1+S2+S3的值是()A.32B.80C.38D.484.(2022秋•西安期中)如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是.核心知识3勾股定理在实际生活中的应用1.(2022秋•绿园区校级期末)如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞行()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.6mB.8mC.10mD.18m2.(2022秋•桥西区校级月考)新冠疫情防控过程中,某中学在大门口的正上方A处装着一个红外线激光测温仪,离地AB=2.1米(如图所示),一个身高1.6米的学生(CD=1.6米)正对门缓慢走到离门1.2米的地方时(BC=1.2米),测温仪自动显示体温,则人头顶离测温仪的距离AD等于.3.(2021秋•青冈县期末)在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.4.(2022秋•莱西市期末)在某风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,此时船距离岸边多少m?(结果保留根号)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2022秋•崂山区校级期末)如图所示,在甲村至乙村的公路AB旁有一块山地正在开发,现需要在C处进行爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB.为了安全起见,爆破点C周围半径...