小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com有理数的概念一、本节学习指导本节知识点比较多,同学们要认真学习并加以总结,用自己的语言来理解部分知识是有助于我们记忆的。对于本节的知识如果一时记不住也不要急,毕竟我们才刚刚进入初级数学的学习。二、知识要点1、正数和负数(1)、大于0的数叫做正数。(2)、在正数前面加上负号“-”的数叫做负数。(3)、数0既不是正数,也不是负数,0是正数与负数的分界。(4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。2、有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2。不是有理数;(2)有理数的分类:①②(3)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0是非负数;a≤0a是负数或0a是非正数.3、数轴【重点】(1)、用一条直线上的点表示数,这条直线叫做数轴。它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点;②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…(2)、数轴的三要素:原点、正方向、单位长度。(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。数轴的规范画法:是条直线,数字在下,字母在上。注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。4、相反数(1)、只有符号不同的两个数叫做互为相反数。①注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;②非零数的相反数的商为-1;③相反数的绝对值相等。(2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)、a和-a互为相反数。0的相反数是0,正数的相反数是负数,负数的相反数是正数。相反数是它本身的数只有0。(4)、在任意一个数前面添上“-”号,新的数就表示原数的相反数。(5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=0,则a、b互为相反数。(6)、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-“的个数为奇数,化简结果为负数。比如:-2×4×(-3)×(-1)×(-5),首先由4个负号,所以最终结果是正数,再算数字相乘得到1205、绝对值(1)、绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。(2)、正数的绝对值等于它本身;0的绝对值是0(或者说0的绝对值是它本身,或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的意义是数轴上表示某数的点离开原点的距离;)。0是绝对值最小的数。(3)、绝对值可表示为:或;(4)、;;(5)、任何数的绝对值总是非负数(非负数是正数或0),即|a|≥0。(6)、互为相反数的两个数的绝对值相等。绝对值相等的两个数可能是互为相反数或者相等。(7)、有理数比大小:①正数比0大,0大于负数,正数大于负数;②两个负数比较,绝对值大的反而小;③数轴上的两个数,右边的数总比左边的数大;(8)、比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。三、经验之谈:本节我们要理解很多的名词概念,希望同学们多读几遍。其次我们还要重点理解正数和负数的关系,以及对绝对值几何意义,还有数轴的画法。总之本节我们要认真学习。有理数的运算一、本节...