2010年浙江省衢州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个数中,负数是()A.﹣3B.0C.0.2D.32.(3分)如图,D,E分别是△ABC的边AC和BC的中点,已知DE=2,则AB=()A.1B.2C.3D.43.(3分)不等式x<2在数轴上表示正确的是()A.B.C.D.4.(3分)某班50名学生的一次英语听力测试成绩分布如下表所示(满分10分):成绩(分)012345678910人数(人)0001013561519这次听力测试成绩的众数是()A.5分B.6分C.9分D.10分5.(3分)已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是()A.B.C.D.6.(3分)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是()A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆7.(3分)下列四个函数图象中,当x>0时,y随x的增大而增大的是()A.B.C.D.8.(3分)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3B.2m+6C.m+3D.m+69.(3分)小刚用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm210.(3分)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y=B.y=C.y=D.y=二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣9=.12.(4分)若点(4,m)在反比例函数y=(x≠0)的图象上,则m的值是.13.(4分)如图,直线DE交∠ABC的边BA于点D,若DE∥BC,∠B=70°,则∠ADE的度数是度.14.(4分)玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有种.15.(4分)已知a≠0,S1=2a,S2=,S3=,…,S2010=,则S2010=(用含a的代数式表示).16.(4分)如图,△ABC是⊙O的内接三角形,点D是的中点,已知∠AOB=98°,∠COB=120°,则∠ABD的度数是度.三、解答题(共8小题,满分66分)17.(6分)计算:18.(6分)解方程组:19.(6分)已知:如图,E,F分别是平行四边形ABCD的边AD,BC的中点.求证:AF=CE.20.(8分)如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16cm,.(1)求⊙O的半径;(2)如果要将直线l向下平移到与⊙O相切的位置,平移的距离应是多少?请说明理由.21.(8分)黄老师退休在家,为选择一个合适的时间参观2010年上海世博会,他查阅了5月10日至16日(星期一至星期日)每天的参观人数,得到图1、图2所示的统计图,其中图1是每天参观人数的统计图,图2是5月15日(星期六)这一天上午、中午、下午和晚上四个时间段参观人数的扇形统计图.请你根据统计图解答下面的问题:(1)5月10日至16日这一周中,参观人数最多的是哪一天?有多少人?参观人数最少的又是哪一天?有多少人?(2)5月15日(星期六)这一天,上午的参观人数比下午的参观人数多多少人(精确到1万人)?(3)如果黄老师想尽可能选择参观人数较少的时间去参观世博会,你认为他选择什么时间比较合适?22.(10分)如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)23.(10分)小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55、为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小...