1课题1集合与逻辑忽视描述法中代表元素条件限制1.已知集合A={1,2,3,4},集合B={y∈Z|y=−x2+6x−5>0},则A∩B的子集个数为()A.2B.4C.8D.16【答案】B【易错提示】(1)集合的表示中的描述法,需要注意代表元素。(2)集合运算问题注意问的是交集中元素的个数还是子集的个数。常用逻辑用语2.关于x的不等式ax2−2x+1<0的解集为非空集合的一个必要不充分条件是()A.a<1B.a≤1C.0<a<1D.a<0【答案】B【易错提示】(1)对二次型不等式的二次项系数进行分类讨论。(2)对于充分必要条件的理解。3.若命题p:∀x≥0,ex+2x−1≥0,则命题p的否定为()A.∃x0<0,ex0+2x0−1<0B.∀x≥0,ex+2x−1<0C.∃x0≥0,ex0+2x0−1<0D.∃x0<0,ex0+2x0−1≥0【答案】C【易错提示】(1)命题的否定:换量词,否结论。只否定结论不否定条件。(2)填空题注意:一般存在量词命题中的变量x都需要用x0表示。课题2函数与导数函数的性质综合4.已知奇函数f(x)的定义域为R,且对任意x∈R,f(2−x)=f(x),若当x∈0,1时f(x)=log2(x+1),则f(1+2)=()A.−12B.12C.−1D.1【答案】A2【易错提示】(1)识别函数的对称性的给出形式。(2)利用函数的对称性和奇偶性转化到x∈[0,1]内求解。5.已知fx是定义在R上的奇函数,且fx+2=f−x.当x∈[0,1]时,fx=2x−1,则函数g(x)=(x−2)f(x)−1在区间[−3,6]上的所有零点之和为()A.2B.4C.6D.8【答案】D【易错提示】(1)识别函数的周期性的给出形式并求出周期。(2)利用函数的周期性转化到x∈[−3,6],求出零点。复合函数单调性6.若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0,12)内恒有f(x)>0,则f(x)的单调增区间为()A.(−∞,−12)B.(−14,+∞)C.(0,+∞)D.(−∞,−14)【答案】A【易错提示】(1)大家容易忽视对数的真数位置大于0。(2)复合函数的“同增异减”的规则——同:函数增减性相同;异:函数增减性相异。分段函数7.已知函数f(x)=(a−1)x+12,x⩽1−ax2+x,x>1在R上单调递减,则实数a的取值范围是()A.0<a<1B.12≤a<1C.34≤a<1D.0<a≤12【答案】C【易错提示】(1)分段函数容易忽视断点处的分析。(2)分段函数单调性:每段各自增,断点处也要增。则a−1<0a>0−1−2a≤1a−1+12≥−a+1解得34≤a<1函数的图像识别38.已知函数f(x)=x2−ln|x|x,则函数y=f(x)的大致图象为()A.B.C.D.【答案】A【易错提示】(1)做题步骤:奇偶性、特殊点(0附近,无穷,)、单调性看趋势(求导)。(2)在求导看出单调性之后,一定要注意极限值,是否存在渐近线。函数的零点与图像转化9.已知函数f(x)=(x−1)3,x≥0,−(x+1)ex,x<0,,若函数g(x)=f(x)−a有3个零点,则实数a的取值范围是()A.(0,1e2)B.(−1,1e2)C.(−e2,−1)D.(−∞,−1)【答案】A【易错提示】(1)零点问题转化成交点问题。(2)画图像时一定要注意是否存在渐近线,趋向于极限的时候的函数值。构造函数10.设函数f(x)是定义在(−∞,0)上的可导函数,其导函数为f'(x),且有3f(x)+xf'(x)>0,则不等式(x+2015)3f(x+2015)+27f(−3)>0的解集()A.(−2018,−2015)B.(−∞,−2016)C.(−2016,−2015)D.(−∞,−2012)【答案】A【易错提示】(1)需要构造函数g(x)=x3f(x),然后再通过单调性将函数值的关系转化成括号内关系。4(2)当没有思路的时候用可以用−3<x+2015<0进行秒杀。课题3三角函数与解三角形边角互化11.在ABC中,角A、B、C的对边分别为a、b、c,若(a−c⋅cosB)⋅sinB=(b−c⋅cosA)⋅sinA,则ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【易错提示】容易忽视两者互补的情况。两个正弦函数相等的时候,或者角相等,或者相加和为180度。三角综合12.下面选项正确的有()(不定项选择)A.存在实数x,使sinx+cosx=π3;B.若α,β是锐角ABC的内角,则sinα>cosβ;C.函数y=sin23x−7π2是偶函数;D.函数y=sin2x的图象向右平移π4个单位,得到y=sin2x+π4的图象.【答案】ABC【易错提示】本题考察正弦函数,余弦函数的性质,诱导公式的运用,函数y=Asin(ωx+φ)的图象与性质。其中D选项的平移需要注意,是对x进行平移,不是对2x进行平移。解三角形13.设函数f(x)=sin(2x+π6...