2021年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分。请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1.实数2,0,﹣3,❑√2中,最小的数是()A.2B.0C.﹣3D.❑√2【分析】根据正数大于0,负数小于0,正数大于负数,即可判断出最小的数.解: ﹣3<0<❑√2<2,∴最小的数是﹣3,故选:C.【点评】本题考查了实数的比较大小,注意负数比较大小,绝对值大的反而小.2.第七次全国人口普查数据显示,绍兴市常住人口约为5270000人,这个数字5270000用科学记数法可表示为()A.0.527×107B.5.27×106C.52.7×105D.5.27×107【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.解:5270000=5.27×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.解:从正面看,底层是三个小正方形,上层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.在一个不透明的袋中装有6个只有颜色不同的球,其中3个红球、2个黄球和1个白球.从袋中任意摸出一个球,是白球的概率为()A.16B.13C.12D.23【分析】用白球的数量除以所有球的数量即可求得白球的概率.解: 袋子中共有6个小球,其中白球有1个,∴摸出一个球是白球的概率是16,故选:A.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)¿mn.5.如图,正方形ABCD内接于⊙O,点P在^AB上,则∠BPC的度数为()A.30°B.45°C.60°D.90°【分析】根据正方形的性质得到BC弧所对的圆心角为90°,则∠BOC=90°,然后根据圆周角定理求解.解:连接OB、OC,如图, 正方形ABCD内接于⊙O,∴BC弧所对的圆心角为90°,∴∠BOC=90°,∴∠BPC¿12∠BOC=45°.故选:B.【点评】本题考查了圆周角定理和正方形的性质,确定BC弧所对的圆心角为90°,是本题解题的关键.6.关于二次函数y=2(x4﹣)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值6【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数有最小值,最小值为6,然后即可判断哪个选项是正确的.解: 二次函数y=2(x4﹣)2+6,a=2>0,∴该函数图象开口向上,有最小值,当x=2取得最小值6,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确二次函数的性质,会求函数的最值.7.如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2mB.3mC.32mD.103m【分析】利用相似三角形的性质求解即可.解: AB∥OP,∴△CAB△∽CPO,∴ABPO=ACPC,∴AB5=33+4.5,∴OP=2(m),故选:A.【点评】本题考查中心投影以及相似三角形的应用.测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.8.如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形【分析】把点P从点B出发,沿折线BC﹣CD方向移动的整个过程,逐次考虑确定三角形的形状即可。解: ∠B=60°,故菱形由两个等边三角形组合而成,当AP⊥BC时,此时△ABP为等腰三角形;当点P到达点C处时,此时△ABP为等边三角形;当点P在CD上且位于AB的中垂线时,则△ABP为等腰三角形;当点P与点D重合时,此时△ABP为等腰...