小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第6课相似三角形的性质及应用课程标准1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).知识点01相似三角形的性质相似三角形的性质及应用1.相似三角形的对应角相等,对应边的比相等.2.相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.3.相似三角形周长的比等于相似比∽,则由比例性质可得:4.相似三角形面积的比等于相似比的平方小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com目标导航知识精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∽,则分别作出与的高和,则21122=1122ABCABCBCADkBCkADSkSBCADBCAD△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.知识点02相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.相似三角形的性质及应用要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.要点诠释:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺=图上距离/实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4.仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com能力拓展小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考法01相似三角形的性质【典例1】如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,EF与CD交于点G.(1)求证:BD∥EF;(2)若=,BE=4,求EC的长.【思路点拨】(1)根据平行四边的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得答案.【答案】B.【解析】(1)证明: 四边形ABCD是平行四边形,∴AD∥BC. DF=BE,∴四边形BEFD是平行四边形,∴BD∥EF;(2) 四边形BEFD是平行四边形,∴DF=BE=4. DF∥EC,∴△DFG∽CEG,∴=,∴CE==4×=6.【总结升华】本题考查了相似三角形的判定与性质,利用了平行四边形的判定与性质,相似三角形的判定与性质.【即学即练1】在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,求AC边上的高.【答案】过点B做BF⊥AC,垂足为点F, AD,CE分别为BC,AB边上的高,∴∠ADB=∠CEB=90°,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又 ∠B=∠B,∴Rt△ADB∽Rt△CEB,∴,BDABBDBEBECBABCB即,且∠B=∠B,∴△EBD∽△CBA,∴221189BEDBCADEACSS△△,∴13DEAC,又 DE=2,∴AC=6,∴11862ABCACBFS△,BF=.【典例2】已知:如图,在△ABC与△CAD中,DA∥BC,CD与AB相交于E点,且AE︰EB=1︰2,EF∥BC交AC于F点,△ADE的面积为1,求△BCE和△AEF的面积.【答案与解析】 DA∥BC,∴△ADE∽△BCE.∴S△ADE:S△BCE=AE2:BE2. AE︰BE=1:2,∴S△ADE:S△BCE=1:4.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com S△ADE=1,∴S△BCE=4. S△ABC:S△BCE=AB:BE=3:2,∴S△ABC=6....