小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第4课图形的相似和比例线段课程标准1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似;2、了解比例线段的概念及有关性质,探索相似图形的性质,知道两相似多边形的主要特征:对应角相等,对应边的比相等.明确相似比的含义;3、知道两个相似的平面图形之间的关系,会根据相似多边形的特征识别两个多边形是否相似,并会运用性质进行相关的计算,提高推理能力.知识点01比例线段1.线段的比:如果选用同一长度单位量得两条线段a、b长度分别是m、n,那么就说这两条线段的比是a:b=m:n,或写成.2.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.3.比例的基本性质:(1)若a:b=c:d,则ad=bc;(2)若a:b=b:c,则=ac(b称为a、c的比例中项).知识点02相似图形在数学上,我们把形状相同的图形称为相似图形(similarfigures).要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等;知识点03相似多边形相似多边形的概念:如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com目标导航知识精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.考法01比例线段【典例1】求证:如果,那么.【思路点拨】这是比例的合比性质,利用等式的性质得到证明.【答案与解析】 ,在等式两边同加上1,∴,∴.【总结升华】比例有合比性质如果,;分比性质如果,;更比性质如果,.【即学即练1】如果,那么的值是()A.B.C.D.【答案】B;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com能力拓展小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com提示: ,∴==.故选B.考法02相似图形【典例2】如果两个四边形的对应边成比例,能不能得出这两个四边形相似?为什么?【答案与解析】从我们日常生活的直观经验中可以得出结论.两个四边形对应边成比例,这两个四边形不一定相似,如下图,边长是6的正方形和边长是2的菱形,它们对应边之比都是3,但它们形状并不一样,因而也不相似.【总结升华】多边形的相似要满足两个条件:(1)对应角相等,(2)对应边的比相等.【即学即练2】下面的四个图案是空心的矩形,正方形,等边三角形,不等边三角形,其中每个图案的边的宽度都相等,那么每个图案中边的内外边缘所围成的几何图形不相似的是()【答案】A考法02相似多边形【典例3】一个矩形ABCD的较短边长为2.(1)如图①,若沿长边对折后得到的矩形与原矩形相似,求它的另一边长;(2)如图②,已知矩形ABCD的另一边长为4,剪去一个矩形ABEF后,余下的矩形EFDC与原矩形相似,求余下矩形EFDC的面积.【答案与解析】解:(1)由已知得MN=AB=2,MD=AD=BC, 沿长边对折后得到的矩形与原矩形相似,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴矩形DMNC与矩形ABCD相似,=,∴DM•BC=AB•MN,即BC2=4,∴BC=2,即它的另一边长为2;(2) 矩形EFDC与原矩形ABCD相似,∴=, AB=CD=2,BC=4,∴DF==1,∴矩形EFDC的面积=CD•DF=2×1=2.【总结升华】本题考查相似多边形的性质:相似多边形对应边的比相等.【即学即练3】等腰梯形与等腰梯形相似,,求出的长及梯形各角的度数.【答案】 等腰梯形与等腰梯形相似【典例4】某小区有一块矩形草坪长20米,宽10米,沿着草坪四周要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;若不能,说明理由.【思路点拨】四边形相似要满足角对应相等,边对应...