小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第1课反比例函数课程标准1.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.4.会解决一次函数和反比例函数有关的问题.知识点01反比例函数的定义一般地,形如(为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.要点诠释:(1)在中,自变量是分式的分母,当时,分式无意义,所以自变量的取值范围是,函数的取值范围是.故函数图象与轴、轴无交点.(2)()可以写成()的形式,自变量的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数,从而得到反比例函数的解析式.知识点02确定反比例函数的关系式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com目标导航知识精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:();(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数的值;(4)把求得的值代回所设的函数关系式中.知识点03反比例函数的图象和性质1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与轴、轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点()在反比例函数的图象上,则点()也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(为常数,)中,由于,所以两个分支都无限接近但永远不能达到轴和轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由的符号决定的:当时,两支曲线分别位于第一、三象限内,当时,两支曲线分别位于第二、四象限内.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3、反比例函数的性质(1)如图1,当时,双曲线的两个分支分别位于第一、三象限,在每个象限内,值随值的增大而减小;(2)如图2,当时,双曲线的两个分支分别位于第二、四象限,在每个象限内,值随值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出的符号.知识点04比例系数K的几何意义过双曲线()上任意一点作轴、轴的垂线,所得矩形的面积为.过双曲线()上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为.要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.考法01反比例函数定义【典例1】当为何值时是反比例函数?【思路点拨】根据反比例函数解析式,也可以写成的形式,后一种表达方法中的次数为-1,由此可知函数是反比例函数,要具备的两个条件为且,二者必须同时满足,缺一不可.小学、初中、高中各种试卷真题知识归纳文案合...