目标导航知识精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第13课用函数观点看一元二次方程课程标准(1)会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;(2)会求抛物线与x轴交点的坐标,掌握二次函数与不等式之间的联系;(3)经历探索验证二次函数与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题.知识点01二次函数与一元二次方程的关系求二次函数(a≠0)的图象与x轴的交点坐标,就是令y=0,求中x的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x轴的交点的个数,它们的关系如下表:判别式二次函数一元二次方程图象与x轴的交点坐标根的情况△>0抛物线与x轴交于,两点,且,此时称抛物线与x轴相交一元二次方程有两个不相等的实数根△=0抛物线与x轴交切于这一点,此时称抛物线与x轴相切一元二次方程有两个相等的实数根△<0抛物线与x轴无交点,此时称抛物线与x轴相离一元二次方程在实数范围内小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【注意】二次函数图象与x轴的交点的个数由b2−4ac的值来确定的.(1)当二次函数的图象与x轴,Δ=b2−4ac>0,方程有两个不相等的实根;(2)当二次函数的图象与x轴,Δ=b2−4ac=0,方程有两个相等的实根;(3)当二次函数的图象与x轴,Δ=b2−4ac<0,方程没有实根.知识点02抛物线与直线的交点问题抛物线与x轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线(a≠0)与y轴交点和二次函数与一次函数的交点问题.抛物线(a≠0)与y轴的交点是(0,c).抛物线(a≠0)与一次函数(k≠0)的交点个数由方程组的解的个数决定.当方程组有两组不同的解时两函数图象;当方程组有两组相同的解时两函数图象;当方程组无解时两函数图象.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题.【注意】求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题.知识点03利用二次函数图象求一元二次方程的近似解用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2.确定一元二次方程的根的取值范围.即确定抛物线与的大致范围;3.在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y值.4.确定一元二次方程的近似根.在(3)中最接近0的y值所对应的x值即是一元二次方的近似根.【注意】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的就是方程的根;(3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的即为方程的根.知识点04抛物线与x轴的两个交点之间的距离公式当△>0时,设抛物线与x轴的两个交点为A(,0),B(,0),则、是一元二次方程的两个根.由根与系数的关系得,.∴即(△>0).知识点05抛物线与不等式的关系二次函数(a≠0)与一元二次不等式(a≠0)及(a≠0)之间的关系如下:判别式抛物线与x轴的交点不等式的解集不等式的解集△>0小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com能力拓展小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com△=0△<0注:a<0的情况请同学们自己完成.【注意】抛物线在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式的解集.不等式中如果带有等号,其解集也相应带有等号.考法01二次函数图象与坐标轴交点【典例1】已知二次函数y...