目标导航知识精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题11.2与三角形有关的角1、会用平行线的性质与平角的定义证明三角形内角和等于180°.2、会运用三角形内角和定理进行计算.3、理解并掌握三角形的外角的概念.4、会利用三角形的外角性质、直角三角形的性质解决问题.知识点01三角形的内角和定理1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.2)三角形内角和定理:三角形内角和是180°.3)三角形内角和定理的证明:证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.【微点拨】三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.【知识拓展1】运用三角形的内角和定理解决角度问题例1.(2022·河南濮阳·八年级期末)有一块直角三角板放置在上,三角板的两条直角边,恰好分别经过点B、C,在中,,则的度数是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【即学即练】1.(2022春•顺德区期中)如图,在△ABC中,BO,CO是△ABC的内角平分线且BO,CO相交于点O.(1)若∠ACB=80°,∠ABC=40°,求∠BOC的度数;(2)若∠A=60°,求∠BOC的度数;(3)请你直接写出∠A与∠BOC满足的数量关系式,不需要说明理由.【知识拓展2】三角形的内角和定理的证明例2.(2022·浙江杭州·八年级期末)在探索并证明三角形的内角和定理“三角形三个内角的和等于180°”时,圆圆同学添加的辅助线为“过点作直线DEBC”.请写出“已知”、“求证”,并补全证明.已知:DEBC.求证:三角形三个内角的和等于180°.证明:过点作直线DEBC.【即学即练】1.(2021·吉林·舒兰市教师进修学校七年级期末)如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论。小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把和移动到的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,.求证:.证明:延长,过点作.∴______(两直线平行,内错角相等),(_______________). (平角定义),∴.(1)请你补充完善小明方法1的证明过程;(2)请你参考小明解决问题的方法1的思路,自行画图标注好顶点字母,写出方法2证明该结论的过程.知识点02三角形的外角性质1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.【微点拨】1)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.2)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.【知识拓展1】三形的外角性质的相关计算例1.(2022•灞桥区校级二模)三角形的一个外角是100°,则与它不相邻的两内角平分线夹角(钝角)是.【即学即练1】1.(2021•黄石港区期末)如图,△ABC中,∠ABC的平分线BD交AC于点D,E在CA的延长线上,∠BAE=120°,∠C=40°,...