小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题12.4三角形全等的九大基本模型模型一:平移模型【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】例1.(2022·浙江杭州市·八年级期中)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB//DE,AB=DE,∠A=∠D.(1)求证:;(2)若BF=11,EC=5,求BE的长.【答案】(1)见解析;(2)BE=3.【分析】(1)根据平行线的性质由AB∥DE得到∠ABC=∠DEF,然后根据“ASA”可判断△ABC≌△DEF;(2)根据三角形全等的性质可得BC=EF,由此可求出BE=CF,则利用线段的和差关系求出BE.【详解】(1)证明: AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中∴△ABC≌△DEF(ASA);(2)解: △ABC≌△DEF,∴BC=EF,∴BC-EC=EF-EC,即BE=CF, BF=11,EC=5,∴BF-EC=6.∴BE+CF=6.∴BE=3.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键.变式1.(2021•富顺县校级月考)如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【思路】可以根据已知利用SAS判定△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图(2)、(3)时,其余条件不变,结论仍然成立.可以利用全等三角形的常用的判定方法进行验证.【解答过程】解: AB=CD,∴AB+BC=CD+BC,即AC=BD. DE∥AF,∴∠A=∠D.在△AFC和△DEB中,,∴△AFC≌△DEB(SAS).在(2),(3)中结论依然成立.如在(3)中, AB=CD,∴AB﹣BC=CD﹣BC,即AC=BD, AF∥DE,∴∠A=∠D.在△ACF和△DEB中,,∴△ACF≌△DEB(SAS).模型二:轴对称模型【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】例2.(2021·河南南阳市·八年级期末)如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comO,(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.【答案】(1)见解析;(2)78°【分析】(1)由AE=DB得出AE+EB=DB+EB,即AB=DE,利用HL即可证明Rt△ABC≌Rt△DEF;(2)根据直角三角形的两锐角互余得∠ABC=39°,根据全等三角形的性质得∠ABC=∠DEF=39°,由三角形外角的性质即可求解.【详解】(1)证明: AE=DB,∴AE+EB=DB+EB,即AB=DE.又 ∠C=∠F=90°,AC=DF,∴Rt△ABC≌Rt△DEF.(2) ∠C=90°,∠A=51°,∴∠ABC=∠C-∠A=90°-51°=39°.由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF.∴∠DEF=39°.∴∠BOF=∠ABC+∠BEF=39°+39°=78°.【点睛】本题主要考查直角三角形的两锐角互余,三角形外角的性质,全等三角形的判定与性质,证明三角形全等是解题的关键.变式2.(2021·安徽·八年级期末)如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.求证:AM=AN.【解题思路】利用已知条件先证明△DBC≌△EBC,再证明△AMD≌△ANE,即可解答.【解答过程】解: AB=AC,D、E分别是AB、AC的中点,∴AD=BD=AE=EC,∠B=∠C,在△DBC和△EBC中∴△DBC≌△EBC,∴∠BDC=∠BDE, ∠BDC=∠ADM,∠BEC=∠AEN,∴∠ADM=∠AEN,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在△AMD和△ANE中 ∴△AMD≌△ANE∴AM=AN.模...