第1页共13页中考数学专题几何知识点总结直线:没有端点,没有长度射线:一个端点,另一端无限延长,没有长度线段:两个端点,有长度一、图形的认知1、我们把从实物中抽象出的各种图形统称为几何图形2、有些几何图形的各部分不都在同一平面内,它们是立体图形3、有些几何图形的各部分都在同一平面内,它们是平面图形4、有些立体图形是由一些平面图形转成的,将它们的表面适当展开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图5、长方体、正文体、圆柱、圆锥、球等都是几何体,简称体6、包围着体的是面,面有平面和曲面两种。由若干个多边形所围成的几何体,叫做多面体。围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点。注意:各面都是平面的立体图形称为多面体。像圆锥、圆台因为有的面是曲面,而不被称为“多面体”。圆锥、圆柱、圆台统称为旋转体。立体图形的各个面都是平的面,这样的立体图形称为多面体。7、经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线8、当两条不同的直线有一个公共点时,我们就称这两条直线相交。这个公共点叫做它们的交点9、两点的所有连线中,线段最短。简单说成:两点之间,线段最短10、连接两点间的线段的长度,叫做这两点的距离11、角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边12、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线13、余角和补角:如果两个角加起来为90,则一个角是另一个角的余角如果两个角加起来为180,则一个角是另一个角的补角邻补角:相邻的补角第2页共13页14、同角的余角相等,等角的余角相等同角的补角相等,等角的补角相等二、平行线知识点1、对顶角性质:对顶角相等。注意:对顶角的判断一个角的两边分别是另一个角两边的反向延长线,这两个角是对顶角。两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。2、一直线互相垂直,(相交成90度角),那么一条直线就叫另一条直线的垂线,它们的交点叫垂足。3、过一点有且只有一条直线与已知直线垂直4、直线外一点到它与这条直线垂足的连线,叫做垂线段连接直线外一点与直线上各点所有线段中,垂线段最短。我们把垂线段的长度,叫点到直线的距离5、过直线外一点只有一条直线与已知直线平行6、直线的两种关系:平行与相交(垂直是相交的一种特殊情况)6、如果a∥b,a∥c,则b∥c7、同位角、内错角、同旁内角的定义。注意从文字角度去解读。8、平行线的性质:两直线平行,同位角相等、内错角相等、同旁内角互补9、注意区分判定及性质。将平行线性质反向解读,即为判定10、在同一平面内,平行线永不相交三、命题、定理1、判断一件事情的语句,叫做命题,命题由题设和结论两部分组成2、命题可以写成“如果……那么……”的形式,这时“如果”后接的部分就是题设,“那么”后接的部分就是结论。3、结论一定成立的命题,叫做真命题;不能保证结论一定成立的,叫做假命题。4、定理:我们学习过的一些图形的性质,都是真命题。它们的正确性是我们经过推理证实的,这样得到的真命题叫做定理。四、平移1、平移性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。2、平移作用:新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。(或者在同一直线上且相等)图形的这种移动,叫做平移变换,简称平移。第3页共13页平移之后的图形与原图形相比,对应边相等,对应角相等五、平面直角坐标系知识点1、有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做有序数对。2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交点为平面直角坐标系的原点3、象限:坐标轴上的点不属于任何象限第一象限:x>0,y>...