第一节实数的有关概念和运算负分数无理数分数0———有理数实数整数———正整数负整数———正分数———负无理数正无理数有限小数或循环小数无限不循环小数实数的概念第一章式数与1.数轴的三要素:、和单位长度.2.与数轴上的点一一对应.3.实数的相反数、倒数、绝对值:实数a的相反数为;若a,b互为相反数,则a+b=;非零实数a的倒数为(a≠0);若a,b互为倒数,则ab=;实数a的绝对值为|a|=4.乘方:求n个因数a的的运算叫做乘方.原点正方向实数-a01相同乘积1.科学记数法:一般形式为a×10n(≤|a|<,n为整数).2.近似数:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.1.数轴比较法:数轴上的两个数,边的数总比边的数大.2.性质比较法:正数>0>负数.3.绝对值比较法:a<0,b<0,若|a|>|b|,则ab.4.根式比较法:a>b≥0⇔5.差值法比较:(1)a-b>0⇔a>b;(2)a-b<0⇔a<b;(3)a-b=0⇔a=b.6.求商法比较:若b>0,则(1)>1⇔a>b;(2)<1⇔a<b;(3)=1⇔a=b110右左<1.实数的运算顺序是先算、,再算,最后算.如果有括号,先算,再算,最后算.同级运算应.2.零指数幂的意义:a0=(a≠0).3.负整数指数幂的意义:a-p=(a≠0,p为整数).4.正数的任何次幂都为,负数的奇次幂为,负数的偶次幂为.5.初中所涉及的三个非负数:|a|,a2,(a≥0).若几个非负数的和为0,则时为0.例如:若|a|+b2+=0,则a=b=c=0.乘方开方乘除加减小括号内的中括号内的大括号内的1正数负数正数按从左到右的顺序第二节整式与因式分解1.代数式:代数式是用(加、减、乘、除、乘方、开方)把或表示的连接而成的式子,单独的一个数或一个字母也是代数式.2.代数式的值:用数值代替代数式里的,计算后所得的结果.3.求代数式的值主要用代入法,代入法分为直接代入、整体代入和寻找规律求值.运算符号数数字母字母1.整式单项式:只是数字与字母的____的代数式叫做单项式.单独一个数字或字母也是单项式.多项式:几个单项式的_____叫做多项式.积和知识点1:代数式、代数式的值知识点2:整式的相关概念1.整式的加减:整式的加减实际上是.合并同类项2.单项式中的叫做这个单项式的系数;所有字母的指数叫做单项式的次数.3.组成多项式的各个单项式中叫做多项式的次数.4.同类项:多项式中所含相同并且也相同的项,叫做同类项.数字因数和次数最高的项的次数字母相同字母的指数2.整式的乘除知识点3:整式的运算3.乘法公式=_________平方差公式:完全平方公式:___________1.am·an=(m,n都是正整数).2.(ab)n=(n是正整数).3.(am)n=(m,n都是正整数).4.am÷an=(a≠0,m,n都是正整数,且m>n).1.因式分解:把一个多项式化成几个整式的形式,因式分解是的逆变形.2.因式分解的方法:(1)提公因式法:ma+mb+mc=.(2)公式法:a2-b2=,a2±2ab+b2=.am+nanbnamnam-n积多项式乘法M(a+b+c)(a+b)(a-b)(a±b)2知识点4:幂的运算知识点5:因式分解3.因式分解的一般步骤:(1)如果多项式各项有公因式,应先提取公因式;(2)如果各项没有公因式,可以尝试使用公式法来分解因式;(3)检查因式分解是否彻底,必须分解到每一个因式不能再分解为止.以上三步骤可以概括为“一提二套三检查”.4.整式的乘法和因式分解是互逆变形,它们可以用来相互检验其正确性.第三节分式1.形如(A、B是整式,且B中含有,B≠0)的式子叫做分式,其中A叫做分子,B叫做分母.2.分式有意义:在分式中,当时,分式有意义;当时,分式没有意义.3.分式的值为零:分式的值为零的条件是分子A=0,而分母B≠0.4.有理式:整式和分式统称为有理式.字母分母B≠0分母B=0知识点1:分式的有关概念知识点2:分式的性质(约分、通分)1.分式的乘、除法:3.分式的加减法.4.分式的混合运算.【方法归纳】(1)分式乘法的是分实质约,能直接分的先分约应约,不能直接约分的,可先因式分解,看能否分约,然后按法行则进;(2)分式算的果必是运结须最分式或整式简;(3)由字母的求分式的选值值时,要使分式的果有意选值既结义,又要使化前的原分式有意简义.2.分式的乘方:————————————知识点3:分式的运算第四节数的开方二次根式知识点1:平方根、算术平方根与立方根正数a0负数a算平方根术平方根立方根知识点2:二次根式的有关概念(1)被开方数的因数是整数,因式是;(2)被开方数中不含有.整式开得尽方的因数或因式000没有没有1.形...