2015年浙江省舟山市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)计算2﹣3的结果为()A.﹣1B.﹣2C.1D.22.(3分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个3.(3分)截至今年4月10日,舟山全市需水量为84327000m3,数据84327000用科学记数法表示为()A.0.84327×108B.8.4327×107C.8.4327×108D.84327×1034.(3分)质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A.5B.100C.500D.100005.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A.B.2C.D.6.(3分)与无理数最接近的整数是()A.4B.5C.6D.77.(3分)如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3B.2.4C.2.5D.2.68.(3分)一元一次不等式2(x+1)≥4的解在数轴上表示为()A.B.C.D.9.(3分)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.10.(3分)如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中真命题的序号是()A.①B.②C.③D.④二、填空题(每小题4分,共24分)11.(4分)因式分解:ab﹣a=.12.(4分)把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式.13.(4分)把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是.14.(4分)一张三角形纸片ABC,AB=AC=5,折叠该纸片使点A落在BC的中点上,折痕经过AC上的点E,则AE的长为.15.(4分)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=(用含a的代数式表示).(2)设该格点多边形外的格点数为c,则c﹣a=.16.(4分)如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1,点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0).设点M转过的路程为m(0<m<1),随着点M的转动,当m从变化到时,点N相应移动的路径长为.三、解答题(6,6,6,8,8,10,10)17.(6分)(1)计算:|﹣5|+×2﹣1;(2)化简:a(2﹣a)+(a+1)(a﹣1).18.(6分)小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.19.(6分)如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,(1)观察图形,写出图中所有与∠AED相等的角.(2)选择图中与∠AED相等的任意一个角,并加以证明.20.(8分)舟山市2010﹣2014年社会消费品零售总额及增速统计图如图:请根据图中信息,解答下列问题:(1)求舟山市2010﹣2014年社会消费品零售总额增速这组数据的中位数.(2)求舟山市2010﹣2014年社会消费品零售总额这组数据的平均数.(3)用适当的方法预测舟山市2015年社会消费品零售总额(只要求列式说明,不必计算出结果).21.(10分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.22.(10分)小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹...