小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com湘教版8年级下册数学2.2.1平行四边形性质同步练习一、选择题(本大题共8小题)1.在▱ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C2.如图2,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD3.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.144.如图,在▱ABCD中,AB=4,BC=6,∠B=30°,则此平行四边形的面积是()A.6B.12C.18D.245.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com12ABCD图2小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.10B.14C.20D.226.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDFB.EF=DFC.AD=2BFD.BE=2CF7.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.A.36°B.52°C.48°D.30°8.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共6小题)9.如图所示,在□ABCD中,两条对角线交于点O,有△AOB≌△_____,△AOD≌△_____.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com10.在□ABCD中,∠A:∠B=2:3,则∠B=____,∠C=_____,∠D=____.11.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于.12.如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.13.如图,□ABCD中,E是BA延长线上一点,AB=AE,连结CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为.14.如图,□ABCD的周长为36.对角线AC,BD相交于点O.点E是CD的中点.BO=12.则△DOE的周长为__________________.三、计算题(本大题共4小题)15.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com16.图1,图2都是8×8的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图1中所画的平行四边形的面积为.17.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com18.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF.参考答案:一、选择题(本大题共8小题)1.B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com分析:此题考查了平行四边形的性质.解: 四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B2.D分析:根据平行四边形性质可知:平行四边形的对边相等,平行四边形的对角相等,平行四边形的对角线互相平分。解:根据平行四边形的性质可知D是错误的。3.B分析:由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求...