小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com19.1.2矩形的判定1.如图,要使▱ABCD成为矩形,需添加的条件是()A.AB=BCB.∠ABC=90°C.∠1=∠2D.AC⊥BD2.如图,在△ABC中,AD⊥BC于点D,DE∥AC交AB于点E,DF∥AB交AC于点F,连结DE,FD,当△ABC满足条件时,四边形AEDF是矩形.3.如图,在▱ABCD中,点M为CD边的中点,且AM=BM.求证:四边形ABCD是矩形.4.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量四边形其中的三个角是否都为直角5.平行四边形各内角的角平分线围成的四边形为()A.任意四边形B.平行四边形C.矩形D.以上都不对6.如图,在△ABC中,AB=AC,AD,AE分别是∠BAC和∠BAC外角的平分线,BE⊥AE,垂足为E.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.四边形ABCD的对角线AC,BD互相平分,要使它成为矩形,需要添加的条件是()A.AB=CDB.AC=BDC.AB=BCD.AC⊥BD8.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.9.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连结EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BEB.BE⊥DCC.∠ADB=90°D.CE⊥DE10.在四边形ABCD中,对角线AC,BD交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC=BD;⑥∠ABC=90°,这六个条件中,可选取三个推出四边形ABCD是矩形,如①②⑤→四边形ABCD是矩形.请再写出符合要求的两个组合:;.11.如图,在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB,BC满足条件时,四边形PEMF为矩形.12.如图,平行四边形ABCD中,点E,F,G,H分别在AB,BC,CD,AD边上,且AE=CG,AH=CF.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.13.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为____.14.如图,在△ABC中,点O是边AC上一个动点,过点O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com答案:1.B2.∠BAC=90°3.易证△AMD≌△BMC(SSS),∴∠C=∠D.又∠C+∠D=180°,∴∠C=∠D=90°,∴平行四边形ABCD是矩形4.D5.C6.(1) AD平分∠BAC,∴∠BAD=∠BAC,又 AE平分∠BAF,∴∠BAE=∠BAF, ∠BAC+∠BAF=180°,∴∠BAD+∠BAE=(∠BAC+∠BAF)=×180°=90°,即∠DAE=90°,故DA⊥AE(2)AB=DE.理由: AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°, BE⊥AE,∴∠AEB=90°, ∠DAE=90°,故四边形AEBD是矩形.∴AB=DE7.B8.连结BD,EC, ∠BAD=∠CAE,∴∠BAD-∠BAC=∠CAE-∠BAC,∴∠BAE=∠CAD,又 AB=AC,AE=AD,∴△BAE≌△CAD(SAS),BE=CD, DE=CB,∴四边形BCDE是平行四边形,易证△ABD≌△ACE(SAS),∴EC=BD,∴四边形BCDE是矩形9.B10.①②⑥③④⑥11.AB=BC12.(1)在平行四边形ABCD中,∠A=∠C,∠B=∠D,又 AE=CG,AH=CF,∴△AEH≌△CGF(SAS),∴EH=GF,在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF,∴△BEF≌△DGH(SAS),∴GH=EF,∴四边形EFGH是平行四边形(2)在平行四...