八年级数学下册 同步练习18.1 勾股定理(1).doc本文件免费下载 【共6页】

八年级数学下册 同步练习18.1 勾股定理(1).doc
八年级数学下册 同步练习18.1 勾股定理(1).doc
八年级数学下册 同步练习18.1 勾股定理(1).doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com勾股定理1.勾股定理(1)勾股定理:直角三角形两条直角边的平方和,等于斜边的平方.(2)勾股定理的表达式:如果直角三角形的两直角边用a,b表示,斜边用c表示,那么勾股定理可表示为:.(3)勾股定理的变形:(已知两边,求第三边的方法)已知条件未知条件求解方法a、bcc2=a2+b2⇒c=a、cbb2=c2-a2⇒b=b、caa2=c2-b2⇒a=注意:勾股定理应用的前提条件必须是在直角三角形中,已知其中的任意两边的长,根据勾股定理可求出第三边的长.在求解时要先画图,标上已知量,如图,分清要求的边是直角边还是斜边,然后再运用勾股定理或其变形进行解答.【例1】在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c.(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a∶b=8∶15,则a=__________,b=__________;(4)若b=5,∠B=30°,则c=__________.解析:(1)c2=a2+b2=25,则c=5.(2)b2=c2-a2=64,则b=8.(3) a∶b=8∶15,∴设a=8x(x>0),b=15x.又 ∠C=90°,c=34,∴c2=a2+b2=(8x)2+(15x)2,∴c=17x,∴17x=34,x=2,∴a=16,b=30.(4) ∠C=90°,∠B=30°,∴c=2b=10.答案:(1)5(2)8(3)1630(4)10点拨:在直角三角形中,运用勾股定理求某一边的长时,先分清直角边和斜边,然后再利用勾股定理,可设未知数,通过建立方程(组)来解决.2.勾股定理的证明(1)方法:勾股定理的证明方法较多,仅选取一种加以说明.如图所示网格图形中,每一个小方格的边长为1.根据图示填写表格,比较得出结论.A的面积B的面积C的面积图116925图24913小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)结论:①两直角边上的正方形的面积之和等于斜边上的正方形的面积,即SA+SB=SC;②勾股定理:直角三角形斜边的平方等于两直角边的平方和.因为勾股定理既重要又简单,所以很容易吸引人,才使它成百次地被人反复论证.1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法.实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种.【例2】如图所示,在△ABC中,∠A=90°,P是AC的中点,PD⊥BC,D为垂足,BC=9,DC=3,求AB的长.分析:由题可知∠BAC=∠PDC=90°,因此可以利用勾股定理进行计算.解:连接PB. BC=9,DC=3,∴BD=6.在Rt△BDP中,由勾股定理,得PB2=PD2+BD2,即PD2=PB2-BD2.在Rt△PDC中,由勾股定理,得PC2-CD2=PD2,∴PB2-BD2=PC2-CD2.∴PB2-36=PC2-9,∴PB2-PC2=27.又 P为AC的中点,∴PB2-PC2=PB2-AP2=AB2=27,∴AB=3.3.运用勾股定理求边长(1)勾股定理:如果直角三角形的两直角边用a,b表示,斜边用c表示,那么a2+b2=c2.(2)意义:勾股定理是直角三角形特有的定理,反映了直角三角形三边之间的数量关系.(3)延伸:在直角三角形中,若两直角边长分别为a,b,斜边长为c,那么①a=;②b=;③c=.在直角三角形中,知道其中任意两边,根据勾股定理就能求出第三边.运用勾股定理求边长,一定要注意弄清是求直角边还是斜边,注意是加还是减.【例3】小林是开发区中学升旗队的一名旗手,在升旗时发现从旗杆AB的顶端A处垂下的绳子比旗杆AB长1米,他拿着绳子的下端拉开至C处,绳子恰好完全伸直,测得点C距旗杆底部B的距离是5米.请问:能根据这些条件求出旗杆的高度吗?若能,请写出求解过程;若不能,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解:能求出旗杆的高度.如图所示,BC=5米.设AB=x米,则AC=(x+1)米.在Rt△ABC中,∠B=90°,由勾股定理得:AB2+BC2=AC2,即:x2+52=(x+1)2,解得:x=12.即AB=12米.答:旗杆AB的高度为12米.4.勾股定理在等腰三角形中的应用等腰三角形两腰相等;等腰三角形底边上的高、中线、顶角平...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
数学卷-2311杭州市十三中教育集团23学年八上期中.pdf
数学卷-2311杭州市十三中教育集团23学年八上期中.pdf
免费
0下载
人教八年级数学下册 专题03 勾股定理压轴(三大模型)(解析版).docx
人教八年级数学下册 专题03 勾股定理压轴(三大模型)(解析版).docx
免费
0下载
初中八年级上册数学15.1.1从分数到分式(原卷版).doc
初中八年级上册数学15.1.1从分数到分式(原卷版).doc
免费
16下载
人教八年级数学下册 专题9 勾股定理中的最值问题突破技巧(原卷版).docx
人教八年级数学下册 专题9 勾股定理中的最值问题突破技巧(原卷版).docx
免费
0下载
人教八年级数学上册 全等变化模型一  8字全等模型(原卷版).docx
人教八年级数学上册 全等变化模型一 8字全等模型(原卷版).docx
免费
0下载
人教八年级数学下册 专题18.5矩形的性质专项提升训练(重难点培优)-【拔尖特训】2023年培优(解析版)【人教版】.docx
人教八年级数学下册 专题18.5矩形的性质专项提升训练(重难点培优)-【拔尖特训】2023年培优(解析版)【人教版】.docx
免费
0下载
八年级上册 数学20.人教版·吉林省白山市临江期末.doc
八年级上册 数学20.人教版·吉林省白山市临江期末.doc
免费
28下载
八年级数学下册 同步练习第20课  一次函数的应用(学生版).docx
八年级数学下册 同步练习第20课 一次函数的应用(学生版).docx
免费
6下载
初中八年级下册数学19.2平行四边形 特殊平行四边形测验.doc
初中八年级下册数学19.2平行四边形 特殊平行四边形测验.doc
免费
16下载
人教八年级数学上册 专题10 最短路径问题(原卷版).docx
人教八年级数学上册 专题10 最短路径问题(原卷版).docx
免费
0下载
初中八年级上册数学30.北师版·广东省深圳市福田区期末(1)卷.doc
初中八年级上册数学30.北师版·广东省深圳市福田区期末(1)卷.doc
免费
21下载
人教八年级数学上册 12.1全等三角形(解析版).doc
人教八年级数学上册 12.1全等三角形(解析版).doc
免费
0下载
人教八年级数学上册 八年级上期末数学试卷07.doc
人教八年级数学上册 八年级上期末数学试卷07.doc
免费
0下载
期末考试压轴题模拟训练(二)(教师版)-2023年初中数学8年级下册同步压轴题.docx
期末考试压轴题模拟训练(二)(教师版)-2023年初中数学8年级下册同步压轴题.docx
免费
21下载
19.2.2 一次函数-八年级数学人教版(解析版).docx
19.2.2 一次函数-八年级数学人教版(解析版).docx
免费
18下载
初中八年级数学上册第14章——14.1《整式的乘法》同步练习及(含答案)2.doc
初中八年级数学上册第14章——14.1《整式的乘法》同步练习及(含答案)2.doc
免费
5下载
人教八年级数学上册 专题12 分式与分式方程重难点题型分类(原卷版)—2022-2023学年八年级数学上册重难点题型分类高分必刷题(人教版).docx
人教八年级数学上册 专题12 分式与分式方程重难点题型分类(原卷版)—2022-2023学年八年级数学上册重难点题型分类高分必刷题(人教版).docx
免费
0下载
人教八年级数学上册 专题08 分式方程解的三种考法(原卷版)-【压轴必考】2022-2023学年八年级数学上册压轴题攻略(人教版) .docx
人教八年级数学上册 专题08 分式方程解的三种考法(原卷版)-【压轴必考】2022-2023学年八年级数学上册压轴题攻略(人教版) .docx
免费
0下载
人教八年级数学上册 14.1.3积的乘方(解析版).doc
人教八年级数学上册 14.1.3积的乘方(解析版).doc
免费
0下载
八年级上册数学 2.4.1 线段的垂直平分线的性质.doc
八年级上册数学 2.4.1 线段的垂直平分线的性质.doc
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群