小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2022年黑江哈尔市初中水平考龙滨学业试一、选择题(每小题3分,共30分,下列各小均有四题个选项,其中只有一是正个确的)1.(2022黑江哈尔龙滨,1,3分)16的相反数是()A.16B.-16C.6D.-62.(2022黑江哈尔龙滨,2,3分)下列运算一定正确的是()A.(a2b3)2=a4b6B.3b2+b2=4b4C.(a4)2=a6D.a3·a3=a93.(2022黑江哈尔龙滨,3,3分)下列图形中既是轴对称图形又是中心对称图形的是()ABCD4.(2022黑江哈尔龙滨,4,3分)六个大小相同的正方体搭成的几何体如图所示,其左视图是()AB小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comCD5.(2022黑江哈尔龙滨,5,3分)抛物线y=2(x+9)2-3的顶点坐标是()A.(9,-3)B.(-9,-3)C.(9,3)D.(-9,3)6.(2022黑江哈尔龙滨,6,3分)方程2x−3=3x的解为()A.x=3B.x=-9C.x=9D.x=-37.(2022黑江哈尔龙滨,7,3分)如图,AD,BC是☉O的直径,点P在BC的延长线上,PA与☉O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为()A.65°B.60°C.50°D.25°8.(2022黑江哈尔龙滨,8,3分)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.150(1-x2)=96B.150(1-x)=96C.150(1-x)2=96D.150(1-2x)=969.(2022黑江哈尔龙滨,9,3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为()A.32B.4C.92D.610.(2022黑江哈尔龙滨,10,3分)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150kmB.165kmC.125kmD.350km二、空填题(每小题3分,共30分)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com11.(2022黑江哈尔龙滨,11,3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为兆瓦.12.(2022黑江哈尔龙滨,12,3分)在函数y=x5x+3中,自变量x的取值范围是.13.(2022黑江哈尔龙滨,13,3分)计算❑√3+3❑√13的结果是.14.(2022黑江哈尔龙滨,14,3分)把多项式xy2-9x分解因式的结果是.15.(2022黑江哈尔龙滨,15,3分)不等式组{3x+4≥0,4−2x←1的解集是.16.(2022黑江哈尔龙滨,16,3分)已知反比例函数y=-6x的图象经过点(4,a),则a的值为.17.(2022黑江哈尔龙滨,17,3分)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是度.18.(2022黑江哈尔龙滨,18,3分)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是.19.(2022黑江哈尔龙滨,19,3分)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是度.20.(2022黑江哈尔龙滨,20,3分)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF,若AE=BE,OE=3,OA=4,则线段OF的长为.三、解答题(本大共题7小个题,共60分)21.(2022黑江哈尔龙滨,21,7分)先化简,再求代数式(1x−1−x−3x2−2x+1)÷2x−1的值,其中x=2cos45°+1.22.(2022黑江哈尔龙滨,22,7分)如图,方格纸中每个小正方形的边长均为1,△ABC的顶点和线段EF的端点均在小正方形的顶点上.(1)在方格纸中画出△ADC,使△ADC与△ABC关于直线AC对称(点D在小正方形的顶点上);(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4.连接DH,请直接写出线段DH的长.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com23.(2022黑江哈尔龙滨,23,8分)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数...