小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题13二次函数区间及最值问题1.如图,在平面直角坐标系xOy中,点A(–3,5),B(0,5).抛物线y=-x2+bx+c交x轴于C(1,0),D(-3,0)两点,交y轴于点E.(1)求抛物线的解析式及顶点坐标;(2)当-4≤x≤0时,求y的最大值与最小值的积;(3)连接AB,若二次函数y=-x2+bx+c的图象向上平移m(m>0)个单位时,与线段AB有一个公共点,结合函数图象,直接写出m的取值范围.2.已知抛物线的对称轴为直线,图象与轴交于点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于整个函数图像来说,最值在顶点处取到,而对于函数图像的一部分来说,则未必。常见的两种类型分别为:一是给定区间,对称轴不确定;二是给定对称轴,区间不确定。一般步骤是根据已知,画出函数图像,再根据给定的区间或对称轴进行分类讨论,根据题意建立方程求解。难点是有时分类讨论次数较多,计算比较繁琐,容易出错。对于整个函数图像来说,最值在顶点处取到,而对于函数图像的一部分来说,则未必。常见的两种类型分别为:一是给定区间,对称轴不确定;二是给定对称轴,区间不确定。一般步骤是根据已知,画出函数图像,再根据给定的区间或对称轴进行分类讨论,根据题意建立方程求解。难点是有时分类讨论次数较多,计算比较繁琐,容易出错。对于整个函数图像来说,最值在顶点处取到,而对于函数图像的一部分来说,则未必。常见的两种类型分别为:一是给定区间,对称轴不确定;二是给定对称轴,区间不确定。一般步骤是根据已知,画出函数图像,再根据给定的区间或对称轴进行分类讨论,根据题意建立方程求解。难点是有时分类讨论次数较多,计算比较繁琐,容易出错。对于整个函数图像来说,最值在顶点处取到,而对于函数图像的一部分来说,则未必。常见的两种类型分别为:一是给定区间,对称轴不确定;二是给定对称轴,区间不确定。一般步骤是根据已知,画出函数图像,再根据给定的区间或对称轴进行分类讨论,根据题意建立方程求解。难点是有时分类讨论次数较多,计算比较繁琐,容易出错。对于整个函数图像来说,最值在顶点处取到,而对于函数图像的一部分来说,则未必。常见的两种类型分别为:一是给定区间,对称轴不确定;二是给定对称轴,区间不确定。一般步骤是根据已知,画出函数图像,再根据给定的区间或对称轴进行分类讨论,根据题意建立方程求解。难点是有时分类讨论次数较多,计算比较繁琐,容易出错。小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求抛物线的函数表达式.(2)若把抛物线的图象沿轴平移个单位,在自变量的值满足的情况下,与其对应的函数值的最小值为-2,求的值.3.如图,抛物线与轴正半轴,轴正半轴分别交于点,且点为抛物线的顶点.求抛物线的解析式及点G的坐标;点为抛物线上两点(点在点的左侧),且到对称轴的距离分别为个单位长度和个单位长度,点为抛物线上点之间(含点)的一个动点,求点的纵坐标的取值范围.4.如图,已知二次函数y=ax2+3x+的图像经过点A(-1,-3).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求a的值和图像的顶点坐标.(2)若横坐标为m的点B在该二次函数的图像上.①当点B向右平移4个单位长度后所得点B′也落在该二次函数图像上时,求m的值;②若点B到x轴的距离不大于3,请根据图像直接写出m的取值范围.5.如图,抛物线与x轴交于点,点,与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使的周长最小,求点Q的坐标;(3)P是第四象限内抛物线上的动点,求面积S的最大值及此时P点的坐标.6.如图,抛物线与直线交于点A(2,0)和点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求和的值;(2)求点的坐标,并结合图象写出不等式的解集;(3)点是直线上的一个动点,将点向左平移个单位长...