二次函数二次函数及其图像二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为y=ax2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。一般的,自变量x和因变量y之间存在如下关系:一般式y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(b2-4ac)/4a);顶点式y=a(x-h)2+k(a≠0,a、h、k为常数)或y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。在平面直角坐标系中作出二次函数y=x2的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。轴对称1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)顶点2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b2)/4a)当-b/2a=0时,P在y轴上;当Δ=b2-4ac=0时,P在x轴上。开口3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。决定对称轴位置的因素4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定抛物线与y轴交点的因素5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)抛物线与x轴交点个数6.抛物线与x轴交点个数Δ=b2-4ac>0时,抛物线与x轴有2个交点。Δ=b2-4ac=0时,抛物线与x轴有1个交点。Δ=b2-4ac<0时,抛物线与x轴没有交点。当a>0时,函数在x=-b/2a处取得最小值,当a<0时,函数在x=-b/2a处取得最大值当b=0时,抛物线的对称轴是y轴,7.特殊值的形式①当x=1时y=a+b+c②当x=-1时y=a-b+c③当x=2时y=4a+2b+c④当x=-2时y=4a-2b+c用函数观点看一元二次方程1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。实际问题与二次函数在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。