第六节利用三角函数测高课时练习一、单选题(共15题)1.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里答案:C解析:解答:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°. AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中, ∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.分析:首先由方向角的定义及已知条件得出∠NPA=55°,AP=2海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt△ABP,得出AB=AP•cos∠A=2cos55°海里2.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.30海里B.30海里C.60海里D.30海里答案:A解析:解答:过点P作PC⊥AB于点C.在Rt△PAC中, PA=60海里,∠PAC=30°,∴CP=AP=30海里.在Rt△PBC中, PC=30海里,∠PBC=∠BPC=45°,∴PB=PC=30海里.即海轮所在的B处与灯塔P的距离为30海里.故选:A.分析:此题主要考查了解直角三角形的应用-方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线3.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4kmB.(2+)kmC.2kmD.(4-)km答案:B解析:解答:在CD上取一点E,使BD=DE,可得:∠EBD=45°,AD=DC, 从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC, AB=2,∴EC=BE=2,∴BD=ED=∴DC=2+故选:B.分析:根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE的长,即可得出答案4.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.40海里B.40海里C.80海里D.40海里答案:A解析:解答:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.分析:过点P作垂直于AB的辅助线PC,利三角函数解三角形,即可得出答案5.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km答案:C解析:解答:如图,过点A作AD⊥OB于D.在Rt△AOD中, ∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中, ∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=2,∴AB=AD=2即该船航行的距离(即AB的长)为2km.故选:C.分析:本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键6.如图,杭州市郊外一景区内有一条笔直的公路a经过两个景点A,B,景区管委会又开发了风景优美的景点C,经测量景点C位于景点A的北偏东60°方向,又位于景点B的北偏东30°方向,且景点A、B相距200m,则景点B、C相距的路程为()A.100B.200C.100D.200答案:B解析:解答:如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°-∠CAB-∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=200m,即景点B、C相距的路程为200m.故选B.分析:先根据方向角的定义得出∠CAB=30°,∠ABC=120°,由三角形内角和定理求出∠C=180°-∠CAB-∠ABC=30°,则∠CAB=∠C=30°,根据等角对等边求出BC=AB=200m7.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C的北偏东30°方向上,则AB的长为()A.2kmB.3kmC.kmD.3km答案:B解析:解答:过C作CE⊥BD于E,则CE=AB.直角△CED中,∠ECD=30°,CD=6,则CE=CD•cos30°=3=AB.所以AB=3(km).故选B.分析:过C作CE⊥BD于E,根据题意及三角函数可求得CE的长,从而得到...