小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考.一.下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电”价),22:00至次日8:00每千瓦时0.28元(“谷电”价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过”明显告诉我们该题是一道需用不等式来解的应用题.解:设当“峰电”用量占每月总用电量的百分率为x时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.解得x<89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x千米,依题意得方程为,解得x=(千米).经检验x=是所列方程的解,答:山脚离山顶的路程为千米.⑶可提问题:“问B处离山顶的路程小于多少千米?”再解答如下:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设B处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k千米/时,2k千米/时(k>0)依题意得<,解得m<0.72(千米).答:B处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A处走到B处所用的时间比甲组从山顶下到B处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?分析:本题存在的两个不等量关系是:①合计生产M、N型号的服装所需A种布料不大于70米;②合计生产M、N型号的服装所需B种布料不大于52米.解:(1),即.依题意得解之,得40≤x≤44. x为整数,∴自变量x的取值范围是40,41,42,43,44.(2)略2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,...