更多资料添加微信号:DEM2008淘宝搜索店铺:优尖升教育网址:shop492842749.taobao.com专题1.5新定义问题【典例1】小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2).(1)直接写出计算结果,f(4,12)=,f(5,3)=;(2)关于“有理数的除方”下列说法正确的是.(填序号)①f(6,3)=f(3,6);②f(2,a)=1(a≠0);③对于任何正整数n,都有f(n,﹣1)=1;④对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式;(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:f(5,3)×f(4,13)×f(5,﹣2)×f(6,12).【思路点拨】(1)根据题意计算即可;(2)①分别计算f(6,3)和f(3,6)的结果进行比较即可;②根据题意计算即可判断;③分为n为偶数和奇数两种情况分别计算即可判断;④2n为偶数,偶数个a相除,结果应为正;(3)推导f(n,a)(n为正整数,a≠0,n≥2),按照题目中的做法推到即可;(4)按照上题的推导式可以将算式中的每一部分表示出来再计算.更多资料添加微信号:DEM2008淘宝搜索店铺:优尖升教育网址:shop492842749.taobao.com更多资料添加微信号:DEM2008淘宝搜索店铺:优尖升教育网址:shop492842749.taobao.com【解题过程】解:(1)f(4,12)¿12÷12÷12÷12=¿4,f(5,3)=3÷3÷3÷3÷3¿127;故答案为:4;127.(2)①f(6,3)=3÷3÷3÷3÷3÷3¿181,f(3,6)=6÷6÷6¿16,∴f(6,3)≠f(3,6),故错误;②f(2,a)=a÷a=1(a≠0),故正确;③对于任何正整数n,当n为奇数时,f(n,﹣1)=﹣1;当n为偶数时,f(n,﹣1)=1.故错误;④对于任何正整数n,2n为偶数,所以都有f(2n,a)>0,而不是f(2n,a)<0(a<0),故错误;故答案为:②.(3)公式f(n,a)=a÷a÷a÷a÷…÷a÷a=1÷(an2﹣)=(1a)n2﹣(n为正整数,a≠0,n≥2).(4)f(5,3)×f(4,13)×f(5,﹣2)×f(6,12)¿127×9×(−18)×16¿−23.1.(2022•长安区模拟)用“☆”定义一种新运算:对于任何不为零的整数a和b,规定a☆b=ab﹣b2.如(﹣1)☆2=(﹣1)22﹣2=﹣3,则(﹣2)☆(﹣1)的值为()A.﹣3B.1C.32D.−322.(真题•东港区期末)已知a、b皆为正有理数,定义运算符号为※:当a>b时,a※b=2a;当a<b时,a※b=2b﹣a,则3※2﹣(﹣2※3)等于()A.﹣2B.5C.﹣6D.10更多资料添加微信号:DEM2008淘宝搜索店铺:优尖升教育网址:shop492842749.taobao.com更多资料添加微信号:DEM2008淘宝搜索店铺:优尖升教育网址:shop492842749.taobao.com3.(2022•武威模拟)用“*”定义新运算,对于任意有理数a、b,都有a*b=b31﹣,则12*[3*(﹣1)]的值为()A.﹣1B.﹣9C.−12D.04.(真题•洪山区期末)定义:如果a4=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=logaN.例如:因为72=49,所以log749=2;因为53=125,所以log5125=3.则下列说法中正确的有()个.①log66=36;②log381=4;③若log4(a+14)=4,则a=50;④log2128=log216+log28;A.4B.3C.2D.15.(真题•顺城区期末)观察下列两个等式:1−23=¿2×1×23−¿1,2−35=¿2×2×35−¿1,给出定义如下:我们称使等式a﹣b=2ab1﹣成立的一对有理数a,b为“同心有理数对”,记为(a,b),如:数对(1,23),(2,35)都是“同心有理数对”下列数对是“同心有理数对”的是()A.(﹣3,47)B.(4,49)C.(﹣5,611)D.(6,713)6.(真题•旌阳区期末)定义一种对正整数n的“F”运算:①当n...