初中八年级下册数学19.2特殊的平行四边形课时练.doc本文件免费下载 【共8页】

初中八年级下册数学19.2特殊的平行四边形课时练.doc
初中八年级下册数学19.2特殊的平行四边形课时练.doc
初中八年级下册数学19.2特殊的平行四边形课时练.doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com19.2特殊的平行四边形课时练课时一矩形1.矩形具有而平行四边形不具有的性质是()A.对边相等B.对角相等C.对角互补D.对角线平分2.直角三角形中,两直角边长分别为12和5,则斜边中线长是()A.26B.13C.8.5D.6.53.矩形ABCD对角线AC、BD交于点O,AB=5则△ABO的周长为等于.4.如图所示,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.B.C.D.85.如图所示,矩形的对角线和相交于点,过点的直线分别交和于点E、F,,则图中阴影部分的面积为.6.已知矩形的周长为40,被两条对角线分成的相邻两个三角形的周长的差为8,则较大的边长为.7.如图,矩形ABCD中,AC与BD交于O点,BEAC于E,CFBD于F。求证BE=CF。8.如图所示,E为□ABCD外,AE⊥CE,BE⊥DE,求证:□ABCD为矩形9.已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.图l S△PBC+S△PAD=BC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comABCDEF第4题图ABCDEFO第5题图第7题图第8题图小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又 S△PAC+S△PCD+S△PAD=S矩形ABCD∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD.∴S△PBC=S△PAC+S△PCD.请你参考上述信息,当点P分别在图2、图3中的位置时,S△PBC、S△PAC、SPCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.图2图310.如图所示,△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于点F.(1)求证:EO=FO(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.课时一答案:1.C;2.D,提示:由勾股定理求得斜边为:,斜边的中线长为;3.18,提示:AB=5,BC=12,AC=13,;4.A,提示:DE=3,AB=AE=6,在直角三角形ADE中,∠DAE=30,由折叠的性质得∠BAF=∠EAF=30,设BF=,则AF=2,;5.3;6.14;7证明: 四边形ABCD为矩形,∴AC=BD,BO=CO, BEAC,CFBD,∴∠BEO=∠CFO=90,又 ∠BOE=∠COF则BOECOF∴BE=CF8.连接AC、BD,AC与BD相交于点O,连接OE在□ABCD中,AO=OC,BO=DO.在中,OE=,在中,OE=,∴BD=AC,∴□ABCD为矩形.9.猜想结果:图2结论S△PBC=S△PAC+S△PCD;图3结论S△PBC=S△PAC-S△PCD证明:如图2,过点P作EF垂直AD,分别交AD、BC于E、F两点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第10题图小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com S△PBC=BC·PF=BC·PE+BC·EF=AD·PE+BC·EF=S△PAD+S矩形ABCDS△PAC+S△PCD=S△PAD+S△ADC=S△PAD+S矩形ABCD∴S△PBC=S△PAC+S△PCD10.(1)证明: MN∥BC,∴∠BCE=∠CEO又 ∠BCE=∠ECO∴∠OEC=∠OCE,∴OE=OC,同理OC=OF,∴OE=OF(2)当O为AC中点时,AECF为矩形, EO=OF(已证),OA=OC∴AECF为平行四边形,又 CE、CF为△ABC内外角的平分线∴∠EOF=90°,∴四边形AECF为矩形课时二菱形1.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,则下列式子中一定成立的是()A.AC=2OEB.BC=2OEC.AD=OED.OB=OE2.如图,在菱形ABCD中,不一定成立的()A.四边形ABCD是平行四边形B.AC⊥BDC.△ABD是等边三角形D.∠CAB=∠CAD3.如图,如果要使成为一个菱形,需要添加一个条件,那么你添加的条件是.4.菱形的两条对角线长分别是6和8,则菱形的边长为。5.□ABCD的对角线相交于点O,分别添加下列条件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO,使得□ABCD是菱形的条件有()A.1个B.2个C.3个D.4个6.菱形的周长为20,一条对角线长为8,则菱形的面积为.7.在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形。如(1)(2)(5)ABCD是菱形,再写出符合要求的两个:________ABCD是菱形;...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
数学 八年级秋季班-第12讲:正反比例函数综合.docx
数学 八年级秋季班-第12讲:正反比例函数综合.docx
免费
9下载
初中八年级上册数学08 【人教版】中数学试卷(含答案).docx
初中八年级上册数学08 【人教版】中数学试卷(含答案).docx
免费
24下载
初中八年级下册数学18.1.2 第2课时 平行四边形的判定(2).doc
初中八年级下册数学18.1.2 第2课时 平行四边形的判定(2).doc
免费
3下载
初中八年级下册数学18.2.3 第1课时 正方形的性质1.doc
初中八年级下册数学18.2.3 第1课时 正方形的性质1.doc
免费
24下载
八年级上册数学 2.3.2 等腰三角形的判定.doc
八年级上册数学 2.3.2 等腰三角形的判定.doc
免费
12下载
八年级上册 数学61.华师版·吉林省长春市汽车经济技术开发区期末.doc
八年级上册 数学61.华师版·吉林省长春市汽车经济技术开发区期末.doc
免费
20下载
初中八年级数学上册11.3.1 多边形-八年级数学人教版(上)(原卷版).doc
初中八年级数学上册11.3.1 多边形-八年级数学人教版(上)(原卷版).doc
免费
17下载
初中八年级数学上册第13章——13.2《画轴对称图形》同步练习及(含答案)2.doc
初中八年级数学上册第13章——13.2《画轴对称图形》同步练习及(含答案)2.doc
免费
13下载
初中八年级数学下册第十六章检测题.doc
初中八年级数学下册第十六章检测题.doc
免费
10下载
第15章 分式压轴题考点训练-2023年初中数学8年级上册同步压轴题(教师版含解析).docx
第15章 分式压轴题考点训练-2023年初中数学8年级上册同步压轴题(教师版含解析).docx
免费
27下载
八年级上册 数学北师大版3.1 确定位置同步练习含答案解析.doc
八年级上册 数学北师大版3.1 确定位置同步练习含答案解析.doc
免费
23下载
初中八年级数学下册17.2 勾股定理的逆定理-八年级数学人教版(下册)(解析版).doc
初中八年级数学下册17.2 勾股定理的逆定理-八年级数学人教版(下册)(解析版).doc
免费
22下载
初中八年级下册数学19.1平行四边形课时练.doc
初中八年级下册数学19.1平行四边形课时练.doc
免费
25下载
八年级数学下册 同步练习第21课  一次函数全章复习与巩固(教师版).docx
八年级数学下册 同步练习第21课 一次函数全章复习与巩固(教师版).docx
免费
24下载
初中八年级上册数学46.北师版·山西省晋中市太谷县期末卷.doc
初中八年级上册数学46.北师版·山西省晋中市太谷县期末卷.doc
免费
8下载
01 【人教版】八年级下期中数学试卷答题卡.doc
01 【人教版】八年级下期中数学试卷答题卡.doc
免费
26下载
初中八年级数学上册八年级上第一次月考数学试卷02(含答案).doc
初中八年级数学上册八年级上第一次月考数学试卷02(含答案).doc
免费
5下载
16.2 二次根式的乘除-八年级数学人教版(下册)(解析版).doc
16.2 二次根式的乘除-八年级数学人教版(下册)(解析版).doc
免费
18下载
初中八年级下册数学《勾股定理的逆定理》同步练习2.doc
初中八年级下册数学《勾股定理的逆定理》同步练习2.doc
免费
25下载
八年级数学下册5.1  频数与频率.doc
八年级数学下册5.1 频数与频率.doc
免费
18下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群